3.506 \(\int (a+b \cos (c+d x))^{5/2} \sec ^3(c+d x) \, dx\)

Optimal. Leaf size=270 \[ \frac{b \left (11 a^2+8 b^2\right ) \sqrt{\frac{a+b \cos (c+d x)}{a+b}} F\left (\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{4 d \sqrt{a+b \cos (c+d x)}}+\frac{a \left (4 a^2+15 b^2\right ) \sqrt{\frac{a+b \cos (c+d x)}{a+b}} \Pi \left (2;\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{4 d \sqrt{a+b \cos (c+d x)}}+\frac{a^2 \tan (c+d x) \sec (c+d x) \sqrt{a+b \cos (c+d x)}}{2 d}+\frac{9 a b \tan (c+d x) \sqrt{a+b \cos (c+d x)}}{4 d}-\frac{9 a b \sqrt{a+b \cos (c+d x)} E\left (\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{4 d \sqrt{\frac{a+b \cos (c+d x)}{a+b}}} \]

[Out]

(-9*a*b*Sqrt[a + b*Cos[c + d*x]]*EllipticE[(c + d*x)/2, (2*b)/(a + b)])/(4*d*Sqrt[(a + b*Cos[c + d*x])/(a + b)
]) + (b*(11*a^2 + 8*b^2)*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*b)/(a + b)])/(4*d*Sqrt[a
 + b*Cos[c + d*x]]) + (a*(4*a^2 + 15*b^2)*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticPi[2, (c + d*x)/2, (2*b)/
(a + b)])/(4*d*Sqrt[a + b*Cos[c + d*x]]) + (9*a*b*Sqrt[a + b*Cos[c + d*x]]*Tan[c + d*x])/(4*d) + (a^2*Sqrt[a +
 b*Cos[c + d*x]]*Sec[c + d*x]*Tan[c + d*x])/(2*d)

________________________________________________________________________________________

Rubi [A]  time = 0.876703, antiderivative size = 270, normalized size of antiderivative = 1., number of steps used = 10, number of rules used = 10, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.435, Rules used = {2792, 3055, 3059, 2655, 2653, 3002, 2663, 2661, 2807, 2805} \[ \frac{b \left (11 a^2+8 b^2\right ) \sqrt{\frac{a+b \cos (c+d x)}{a+b}} F\left (\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{4 d \sqrt{a+b \cos (c+d x)}}+\frac{a \left (4 a^2+15 b^2\right ) \sqrt{\frac{a+b \cos (c+d x)}{a+b}} \Pi \left (2;\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{4 d \sqrt{a+b \cos (c+d x)}}+\frac{a^2 \tan (c+d x) \sec (c+d x) \sqrt{a+b \cos (c+d x)}}{2 d}+\frac{9 a b \tan (c+d x) \sqrt{a+b \cos (c+d x)}}{4 d}-\frac{9 a b \sqrt{a+b \cos (c+d x)} E\left (\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{4 d \sqrt{\frac{a+b \cos (c+d x)}{a+b}}} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*Cos[c + d*x])^(5/2)*Sec[c + d*x]^3,x]

[Out]

(-9*a*b*Sqrt[a + b*Cos[c + d*x]]*EllipticE[(c + d*x)/2, (2*b)/(a + b)])/(4*d*Sqrt[(a + b*Cos[c + d*x])/(a + b)
]) + (b*(11*a^2 + 8*b^2)*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*b)/(a + b)])/(4*d*Sqrt[a
 + b*Cos[c + d*x]]) + (a*(4*a^2 + 15*b^2)*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticPi[2, (c + d*x)/2, (2*b)/
(a + b)])/(4*d*Sqrt[a + b*Cos[c + d*x]]) + (9*a*b*Sqrt[a + b*Cos[c + d*x]]*Tan[c + d*x])/(4*d) + (a^2*Sqrt[a +
 b*Cos[c + d*x]]*Sec[c + d*x]*Tan[c + d*x])/(2*d)

Rule 2792

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> -S
imp[((b^2*c^2 - 2*a*b*c*d + a^2*d^2)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 2)*(c + d*Sin[e + f*x])^(n + 1))/(
d*f*(n + 1)*(c^2 - d^2)), x] + Dist[1/(d*(n + 1)*(c^2 - d^2)), Int[(a + b*Sin[e + f*x])^(m - 3)*(c + d*Sin[e +
 f*x])^(n + 1)*Simp[b*(m - 2)*(b*c - a*d)^2 + a*d*(n + 1)*(c*(a^2 + b^2) - 2*a*b*d) + (b*(n + 1)*(a*b*c^2 + c*
d*(a^2 + b^2) - 3*a*b*d^2) - a*(n + 2)*(b*c - a*d)^2)*Sin[e + f*x] + b*(b^2*(c^2 - d^2) - m*(b*c - a*d)^2 + d*
n*(2*a*b*c - d*(a^2 + b^2)))*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] &
& NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 2] && LtQ[n, -1] && (IntegerQ[m] || IntegersQ[2*m, 2*n])

Rule 3055

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*s
in[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> -Simp[((A*b^2 - a*b*B + a^2*C)*Cos[e +
 f*x]*(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^(n + 1))/(f*(m + 1)*(b*c - a*d)*(a^2 - b^2)), x] + Dis
t[1/((m + 1)*(b*c - a*d)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[(m + 1)*(b
*c - a*d)*(a*A - b*B + a*C) + d*(A*b^2 - a*b*B + a^2*C)*(m + n + 2) - (c*(A*b^2 - a*b*B + a^2*C) + (m + 1)*(b*
c - a*d)*(A*b - a*B + b*C))*Sin[e + f*x] - d*(A*b^2 - a*b*B + a^2*C)*(m + n + 3)*Sin[e + f*x]^2, x], x], x] /;
 FreeQ[{a, b, c, d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && Lt
Q[m, -1] && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ[n]) ||  !(IntegerQ[2*n] && LtQ[n, -1] && ((IntegerQ[n] &&
  !IntegerQ[m]) || EqQ[a, 0])))

Rule 3059

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2)/(Sqrt[(a_.) + (b_.)*sin[(e_.) +
(f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])), x_Symbol] :> Dist[C/(b*d), Int[Sqrt[a + b*Sin[e + f*x]]
, x], x] - Dist[1/(b*d), Int[Simp[a*c*C - A*b*d + (b*c*C - b*B*d + a*C*d)*Sin[e + f*x], x]/(Sqrt[a + b*Sin[e +
 f*x]]*(c + d*Sin[e + f*x])), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2
- b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 2655

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c +
 d*x])/(a + b)], Int[Sqrt[a/(a + b) + (b*Sin[c + d*x])/(a + b)], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 -
 b^2, 0] &&  !GtQ[a + b, 0]

Rule 2653

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*Sqrt[a + b]*EllipticE[(1*(c - Pi/2 + d*x)
)/2, (2*b)/(a + b)])/d, x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 3002

Int[(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)]))/((c_.) + (d_.)*sin[
(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[B/d, Int[(a + b*Sin[e + f*x])^m, x], x] - Dist[(B*c - A*d)/d, Int[(a +
 b*Sin[e + f*x])^m/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]
&& NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 2663

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[(a + b*Sin[c + d*x])/(a + b)]/Sqrt[a
+ b*Sin[c + d*x]], Int[1/Sqrt[a/(a + b) + (b*Sin[c + d*x])/(a + b)], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a
^2 - b^2, 0] &&  !GtQ[a + b, 0]

Rule 2661

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, (2*b)
/(a + b)])/(d*Sqrt[a + b]), x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2807

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist
[Sqrt[(c + d*Sin[e + f*x])/(c + d)]/Sqrt[c + d*Sin[e + f*x]], Int[1/((a + b*Sin[e + f*x])*Sqrt[c/(c + d) + (d*
Sin[e + f*x])/(c + d)]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && N
eQ[c^2 - d^2, 0] &&  !GtQ[c + d, 0]

Rule 2805

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2*EllipticPi[(2*b)/(a + b), (1*(e - Pi/2 + f*x))/2, (2*d)/(c + d)])/(f*(a + b)*Sqrt[c + d]), x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rubi steps

\begin{align*} \int (a+b \cos (c+d x))^{5/2} \sec ^3(c+d x) \, dx &=\frac{a^2 \sqrt{a+b \cos (c+d x)} \sec (c+d x) \tan (c+d x)}{2 d}+\frac{1}{2} \int \frac{\left (\frac{9 a^2 b}{2}+a \left (a^2+6 b^2\right ) \cos (c+d x)+\frac{1}{2} b \left (a^2+4 b^2\right ) \cos ^2(c+d x)\right ) \sec ^2(c+d x)}{\sqrt{a+b \cos (c+d x)}} \, dx\\ &=\frac{9 a b \sqrt{a+b \cos (c+d x)} \tan (c+d x)}{4 d}+\frac{a^2 \sqrt{a+b \cos (c+d x)} \sec (c+d x) \tan (c+d x)}{2 d}+\frac{\int \frac{\left (\frac{1}{4} a^2 \left (4 a^2+15 b^2\right )+\frac{1}{2} a b \left (a^2+4 b^2\right ) \cos (c+d x)-\frac{9}{4} a^2 b^2 \cos ^2(c+d x)\right ) \sec (c+d x)}{\sqrt{a+b \cos (c+d x)}} \, dx}{2 a}\\ &=\frac{9 a b \sqrt{a+b \cos (c+d x)} \tan (c+d x)}{4 d}+\frac{a^2 \sqrt{a+b \cos (c+d x)} \sec (c+d x) \tan (c+d x)}{2 d}-\frac{\int \frac{\left (-\frac{1}{4} a^2 b \left (4 a^2+15 b^2\right )-\frac{1}{4} a b^2 \left (11 a^2+8 b^2\right ) \cos (c+d x)\right ) \sec (c+d x)}{\sqrt{a+b \cos (c+d x)}} \, dx}{2 a b}-\frac{1}{8} (9 a b) \int \sqrt{a+b \cos (c+d x)} \, dx\\ &=\frac{9 a b \sqrt{a+b \cos (c+d x)} \tan (c+d x)}{4 d}+\frac{a^2 \sqrt{a+b \cos (c+d x)} \sec (c+d x) \tan (c+d x)}{2 d}+\frac{1}{8} \left (b \left (11 a^2+8 b^2\right )\right ) \int \frac{1}{\sqrt{a+b \cos (c+d x)}} \, dx+\frac{1}{8} \left (a \left (4 a^2+15 b^2\right )\right ) \int \frac{\sec (c+d x)}{\sqrt{a+b \cos (c+d x)}} \, dx-\frac{\left (9 a b \sqrt{a+b \cos (c+d x)}\right ) \int \sqrt{\frac{a}{a+b}+\frac{b \cos (c+d x)}{a+b}} \, dx}{8 \sqrt{\frac{a+b \cos (c+d x)}{a+b}}}\\ &=-\frac{9 a b \sqrt{a+b \cos (c+d x)} E\left (\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{4 d \sqrt{\frac{a+b \cos (c+d x)}{a+b}}}+\frac{9 a b \sqrt{a+b \cos (c+d x)} \tan (c+d x)}{4 d}+\frac{a^2 \sqrt{a+b \cos (c+d x)} \sec (c+d x) \tan (c+d x)}{2 d}+\frac{\left (b \left (11 a^2+8 b^2\right ) \sqrt{\frac{a+b \cos (c+d x)}{a+b}}\right ) \int \frac{1}{\sqrt{\frac{a}{a+b}+\frac{b \cos (c+d x)}{a+b}}} \, dx}{8 \sqrt{a+b \cos (c+d x)}}+\frac{\left (a \left (4 a^2+15 b^2\right ) \sqrt{\frac{a+b \cos (c+d x)}{a+b}}\right ) \int \frac{\sec (c+d x)}{\sqrt{\frac{a}{a+b}+\frac{b \cos (c+d x)}{a+b}}} \, dx}{8 \sqrt{a+b \cos (c+d x)}}\\ &=-\frac{9 a b \sqrt{a+b \cos (c+d x)} E\left (\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{4 d \sqrt{\frac{a+b \cos (c+d x)}{a+b}}}+\frac{b \left (11 a^2+8 b^2\right ) \sqrt{\frac{a+b \cos (c+d x)}{a+b}} F\left (\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{4 d \sqrt{a+b \cos (c+d x)}}+\frac{a \left (4 a^2+15 b^2\right ) \sqrt{\frac{a+b \cos (c+d x)}{a+b}} \Pi \left (2;\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{4 d \sqrt{a+b \cos (c+d x)}}+\frac{9 a b \sqrt{a+b \cos (c+d x)} \tan (c+d x)}{4 d}+\frac{a^2 \sqrt{a+b \cos (c+d x)} \sec (c+d x) \tan (c+d x)}{2 d}\\ \end{align*}

Mathematica [C]  time = 2.67647, size = 395, normalized size = 1.46 \[ \frac{\frac{4 b \left (a^2+4 b^2\right ) \sqrt{\frac{a+b \cos (c+d x)}{a+b}} F\left (\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{\sqrt{a+b \cos (c+d x)}}+\frac{a \left (8 a^2+21 b^2\right ) \sqrt{\frac{a+b \cos (c+d x)}{a+b}} \Pi \left (2;\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{\sqrt{a+b \cos (c+d x)}}+2 a \tan (c+d x) \sec (c+d x) \sqrt{a+b \cos (c+d x)} (2 a+9 b \cos (c+d x))-\frac{9 i \csc (c+d x) \sqrt{-\frac{b (\cos (c+d x)-1)}{a+b}} \sqrt{\frac{b (\cos (c+d x)+1)}{b-a}} \left (b \left (b \Pi \left (\frac{a+b}{a};i \sinh ^{-1}\left (\sqrt{-\frac{1}{a+b}} \sqrt{a+b \cos (c+d x)}\right )|\frac{a+b}{a-b}\right )-2 a F\left (i \sinh ^{-1}\left (\sqrt{-\frac{1}{a+b}} \sqrt{a+b \cos (c+d x)}\right )|\frac{a+b}{a-b}\right )\right )-2 a (a-b) E\left (i \sinh ^{-1}\left (\sqrt{-\frac{1}{a+b}} \sqrt{a+b \cos (c+d x)}\right )|\frac{a+b}{a-b}\right )\right )}{\sqrt{-\frac{1}{a+b}}}}{8 d} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*Cos[c + d*x])^(5/2)*Sec[c + d*x]^3,x]

[Out]

((4*b*(a^2 + 4*b^2)*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*b)/(a + b)])/Sqrt[a + b*Cos[c
 + d*x]] + (a*(8*a^2 + 21*b^2)*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticPi[2, (c + d*x)/2, (2*b)/(a + b)])/S
qrt[a + b*Cos[c + d*x]] - ((9*I)*Sqrt[-((b*(-1 + Cos[c + d*x]))/(a + b))]*Sqrt[(b*(1 + Cos[c + d*x]))/(-a + b)
]*Csc[c + d*x]*(-2*a*(a - b)*EllipticE[I*ArcSinh[Sqrt[-(a + b)^(-1)]*Sqrt[a + b*Cos[c + d*x]]], (a + b)/(a - b
)] + b*(-2*a*EllipticF[I*ArcSinh[Sqrt[-(a + b)^(-1)]*Sqrt[a + b*Cos[c + d*x]]], (a + b)/(a - b)] + b*EllipticP
i[(a + b)/a, I*ArcSinh[Sqrt[-(a + b)^(-1)]*Sqrt[a + b*Cos[c + d*x]]], (a + b)/(a - b)])))/Sqrt[-(a + b)^(-1)]
+ 2*a*Sqrt[a + b*Cos[c + d*x]]*(2*a + 9*b*Cos[c + d*x])*Sec[c + d*x]*Tan[c + d*x])/(8*d)

________________________________________________________________________________________

Maple [B]  time = 3.832, size = 1134, normalized size = 4.2 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*cos(d*x+c))^(5/2)*sec(d*x+c)^3,x)

[Out]

-1/4*((2*b*cos(1/2*d*x+1/2*c)^2+a-b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(-72*a*b^2*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2
*c)^6+(44*a^2*b+72*a*b^2)*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)+(-4*a^3-22*a^2*b-18*a*b^2)*sin(1/2*d*x+1/2*c
)^2*cos(1/2*d*x+1/2*c)+4*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*(11*
EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a^2*b+8*EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*b^3-
4*EllipticPi(cos(1/2*d*x+1/2*c),2,(-2*b/(a-b))^(1/2))*a^3-15*EllipticPi(cos(1/2*d*x+1/2*c),2,(-2*b/(a-b))^(1/2
))*a*b^2-9*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a^2*b+9*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^
(1/2))*a*b^2)*sin(1/2*d*x+1/2*c)^4-4*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b)
)^(1/2)*(11*EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a^2*b+8*EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b))
^(1/2))*b^3-4*EllipticPi(cos(1/2*d*x+1/2*c),2,(-2*b/(a-b))^(1/2))*a^3-15*EllipticPi(cos(1/2*d*x+1/2*c),2,(-2*b
/(a-b))^(1/2))*a*b^2-9*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a^2*b+9*EllipticE(cos(1/2*d*x+1/2*c),(
-2*b/(a-b))^(1/2))*a*b^2)*sin(1/2*d*x+1/2*c)^2+11*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^
2+(a+b)/(a-b))^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a^2*b+8*b^3*(sin(1/2*d*x+1/2*c)^2)^(1/2)
*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))-4*(sin(1
/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),2,(-2
*b/(a-b))^(1/2))*a^3-15*a*b^2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)
*EllipticPi(cos(1/2*d*x+1/2*c),2,(-2*b/(a-b))^(1/2))-9*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/
2*c)^2+(a+b)/(a-b))^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a^2*b+9*(sin(1/2*d*x+1/2*c)^2)^(1/2
)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a*b^2)/
(2*cos(1/2*d*x+1/2*c)^2-1)^2/(-2*b*sin(1/2*d*x+1/2*c)^4+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(
-2*sin(1/2*d*x+1/2*c)^2*b+a+b)^(1/2)/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac{5}{2}} \sec \left (d x + c\right )^{3}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))^(5/2)*sec(d*x+c)^3,x, algorithm="maxima")

[Out]

integrate((b*cos(d*x + c) + a)^(5/2)*sec(d*x + c)^3, x)

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))^(5/2)*sec(d*x+c)^3,x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))**(5/2)*sec(d*x+c)**3,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac{5}{2}} \sec \left (d x + c\right )^{3}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))^(5/2)*sec(d*x+c)^3,x, algorithm="giac")

[Out]

integrate((b*cos(d*x + c) + a)^(5/2)*sec(d*x + c)^3, x)